当前位置: 知识学习 > 怎样获取集美大学本科学历?

怎样获取集美大学本科学历?

  • 分类:知识学习
  • 更新时间:2025-04-12
  • 发布时间:2024-05-14 01:45:07
集美大学招收成人高等学历教育有三种类型:高中起点升本科、高中起点升专科、专科起点升本科。高中起点升本科学制为5年、高中起点升专科学制为2.5年、专科起点升本科学制为2.5年。对于集美大学成人高考本科学历学位证的获取,一般需要达到以下要求:1
内容详情

集美大学招收成人高等学历教育有三种类型:高中起点升本科、高中起点升专科、专科起点升本科。

高中起点升本科学制为5年、高中起点升专科学制为2.5年、专科起点升本科学制为2.5年。

对于集美大学成人高考本科学历学位证的获取,一般需要达到以下要求:

1.英语成绩达标(本科在读期间通过学位英语考试),这是最基本的要求也是最重要的要求,学位英语目前大部分省份都是统一考试,个别省份取消学位英语,由报考院校单独组织考试。

2.课程达标,学位课程一般每个专业都是三门课程,学位课程的成绩一般要求是单科成绩不低于75分,平均分达到80分,不过学位课程相对来说都是比较简单的。

3.论文(普通本科院校其实对论文要求不是很严格,只要字数达标、格式正确即可)

通过上述的介绍,相信大家对学位证书有了一定的了解,总体而言,学位的申请有一定的难度,但是只要努力还是可以拿到的,拿到之后对你的职业发展有一定的帮助。

另外,2023年集美大学成人高考预报名已经开启,有意向的朋友们也可以来点击底部官网报名咨询。我们在线做出专业的解答,为你保驾护航,让你在提升学历的道路上少走弯路!集美大学自考成考社会报名入口:https://www.87dh.com/xl/

成人高考可以报哪些学校

高等数学(二)的考试内容共两个部分,第一部分为高等数学,分值约占92%,是主要部分;第二部分为概率论初步,分值约占8%。

1.高等数学部分的复习方法。

考生复习高等数学部分时,可遵循以下复习方法:

(1)深刻理解考试大纲要求掌握的内容及相关的考核要求,将主要知识点进行横向和纵向的梳理,分析各知识点之间的内在联系,形成知识网络。

高等数学部分贯穿始终的一条主线是极限——导数——积分,其知识网络图如下:

把握住这个知识网络,即可把握高等数学部分的基本内容。

(2)对复习内容要分清主次,突出重点,系统复习与重点复习相结合。

“极限”是高等数学中一个极为重要的基本概念,无论是导数,还是定积分、广义积分、曲线的渐近线等概念无不建立在极限的基础上,极限是研究微积分的重要工具。但极限的概念与理论只是高等数学的基础知识,并不是复习的重点,复习的重点是高等数学的核心内容——微分学与积分学,特别是一元函数的微积分,对微分与积分的基本概念、基本理论、基本运算和基本应用要多下功夫。

考生应深刻理解高等数学中的基本概念,特别是导数与微分的定义、原函数与不定积分的定义、定积分的定义等概念。要熟练掌握基本方法和基本技能,特别是函数极限的计算,函数的导数与微分的计算,不定积分与定积分的计算,这是高等数学部分运算与应用的基础。复习中应当狠抓基本功,从熟记基本公式做起,如基本初等函数导数公式,不定积分基本公式。要熟练掌握导数的四则运算法则及复合函数求导法则。要熟练掌握计算不定积分与定积分的基本方法,特别是凑微分法与分部积分法。考题中会有相当数量的关于导数与微分、不定积分与定积分的基本计算题,试题并不难,考生只要达到上述要求,都能正确解答这些试题。

(3)要高度重视导数与定积分的应用。

如利用导数讨论函数的性质和曲线形状,利用导数的几何意义求曲线的切线方程与法线方程,利用函数的单调性证明不等式,利用定积分的换元积分法证明等式,利用定积分的几何应用求平面图形的面积和平面图形绕坐标轴旋转得到的旋转体的体积,以及二元函数的无条件极值与条件极值等。

(4)讲究学习方法,追求学习效益。

要加强练习,注意解题思路和解题技巧的训练,对基本概念、基本理论、基本性质进行多侧面、多层次、由此及彼,由表及里的辨析。如由导数与微分的概念推广到偏导数与全微分的概念,比较它们之间的异同,分析它们之间的内在联系与本质区别。只要把这些关系理清,则可从掌握导数与微分的运算上升到掌握偏导数与全微分的运算。

2.概率论初步的复习方法。

(1)概率论的基本理论涉及的知识范围广,联系现实生活紧密,特别是古典概型部分,以**论、两个原理、排列与组合等知识为基础,所以学习概率之前要适当补习排列与组合知识。

(2)要理解随机现象、随机试验、随机事件等有关概念,理解并掌握事件的四大关系(包含关系、相关关系、互不相容关系、对立关系)和三大运算(事件的和、事件的积、事件的差),会用正确的符号表示事件。会概率的有关计算,突出古典概型的概率计算,会运用概率的加法公式,以及条件概率、事件的独立性、概率的乘法公式计算事件的概率。会求离散型随机变量的分布列,会求离散型随机变量的期望与方差。

3.加强练习,熟悉考题中的各种题型,掌握选择题、填空题和解答题等不同题型的解题方法与解题技巧。

对基本公式、基本方法、基本技能要进行适度、适量的练习,在做题的过程中熟悉运算公式和运算法则,在练习的过程中加强理解与记忆。理解和记忆是相辅相承的,在理解中加深记忆,记忆有助于更深入的理解,理解愈深,记忆愈牢。练习中应注意分析与类比,掌握思考问题和解决问题的正确方法,学会总结与归纳,寻求一般性的解题规律及解题方法,提高解题能力.

我参加成人高考了,急求高中复习资料,下个星期就该考试了。。

集美大学、华侨大学、厦门理工学院等。

1、集美大学:继续教育学院全面依托学校雄厚的师资力量,先进的科研、仪器设备,充分发挥多科性综合大学的整体优势办学,现有成人专升本学历教育12个专业,自学考试本科14个专业、专科15个专业,有各类学生6800多人。今年开设专升本层次的学历教育12个专业,涉及教育、经管、法学、理工等多种学科门类。

2、华侨大学:华侨大学继续教育学院是华侨大学根据社会经济的迅速发展对各种专业人才的大量需求,于1984年经国务院侨务办公室批准成立的一所成人高等教育学院。

3、厦门理工学院:厦门理工学院继续教育学院代表厦门理工学院具体负责统一实施成人与继续教育的二级学院。学院位于厦门理工学院思明校区,坐落在厦门岛南端的蜂巢山麓,与鼓浪屿隔海相望,毗邻南普陀、厦门大学;校区依山傍海,草木繁茂,恬静雅致,环境优美,交通便捷,是社会各界人士求学深造、获享继续教育和终身教育的理想之所。

考前须知:成考高数很难吗?

高考数学基础知识汇总

第一部分 **

(1)含n个元素的**的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;

(2) 注意:讨论的时候不要遗忘了 的情况。

(3)

第二部分 函数与导数

1.映射:注意 ①第一个**中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;

⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、 、 等);⑨导数法

3.复合函数的有关问题

(1)复合函数定义域求法:

① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:

①首先将原函数 分解为基本函数:内函数 与外函数 ;

②分别研究内、外函数在各自定义域内的单调性;

③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数 的定义域是内函数 的值域。

4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性

⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

⑵ 是奇函数 ;

⑶ 是偶函数 ;

⑷奇函数 在原点有定义,则 ;

⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

6.函数的单调性

⑴单调性的定义:

① 在区间 上是增函数 当 时有 ;

② 在区间 上是减函数 当 时有 ;

⑵单调性的判定

1 定义法:

注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;

②导数法(见导数部分);

③复合函数法(见2 (2));

④图像法。

注:证明单调性主要用定义法和导数法。

7.函数的周期性

(1)周期性的定义:

对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。

所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。

(2)三角函数的周期

① ;② ;③ ;

④ ;⑤ ;

⑶函数周期的判定

①定义法(试值) ②图像法 ③公式法(利用(2)中结论)

⑷与周期有关的结论

① 或 的周期为 ;

② 的图象关于点 中心对称 周期为2 ;

③ 的图象关于直线 轴对称 周期为2 ;

④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;

8.基本初等函数的图像与性质

⑴幂函数: ( ;⑵指数函数: ;

⑶对数函数: ;⑷正弦函数: ;

⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;

⑻其它常用函数:

1 正比例函数: ;②反比例函数: ;特别的

2 函数 ;

9.二次函数:

⑴解析式:

①一般式: ;②顶点式: , 为顶点;

③零点式: 。

⑵二次函数问题解决需考虑的因素:

①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。

⑶二次函数问题解决方法:①数形结合;②分类讨论。

10.函数图象:

⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法

⑵图象变换:

1 平移变换:ⅰ ,2 ———“正左负右”

ⅱ ———“正上负下”;

3 伸缩变换:

ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;

ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;

4 对称变换:ⅰ ;ⅱ ;

ⅲ ; ⅳ ;

5 翻转变换:

ⅰ ———右不动,右向左翻( 在 左侧图象去掉);

ⅱ ———上不动,下向上翻(| |在 下面无图象);

11.函数图象(曲线)对称性的证明

(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;

注:

①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;

③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;

特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;

⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;

12.函数零点的求法:

⑴直接法(求 的根);⑵图象法;⑶二分法.

13.导数

⑴导数定义:f(x)在点x0处的导数记作 ;

⑵常见函数的导数公式: ① ;② ;③ ;

④ ;⑤ ;⑥ ;⑦ ;

⑧ 。

⑶导数的四则运算法则:

⑷(理科)复合函数的导数:

⑸导数的应用:

①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?

②利用导数判断函数单调性:

ⅰ 是增函数;ⅱ 为减函数;

ⅲ 为常数;

③利用导数求极值:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得极值。

④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。

14.(理科)定积分

⑴定积分的定义:

⑵定积分的性质:① ( 常数);

② ;

③ (其中 。

⑶微积分基本定理(牛顿—莱布尼兹公式):

⑷定积分的应用:①求曲边梯形的面积: ;

3 求变速直线运动的路程: ;③求变力做功: 。

第三部分 三角函数、三角恒等变换与解三角形

1.⑴角度制与弧度制的互化: 弧度 , 弧度, 弧度

⑵弧长公式: ;扇形面积公式: 。

2.三角函数定义:角 中边上任意一点 为 ,设 则:

3.三角函数符号规律:一全正,二正弦,三两切,四余弦;

4.诱导公式记忆规律:“函数名不(改)变,符号看象限”;

5.⑴ 对称轴: ;对称中心: ;

⑵ 对称轴: ;对称中心: ;

6.同角三角函数的基本关系: ;

7.两角和与差的正弦、余弦、正切公式:①

② ③ 。

8.二倍角公式:① ;

② ;③ 。

9.正、余弦定理:

⑴正弦定理: ( 是 外接圆直径 )

注:① ;② ;③ 。

⑵余弦定理: 等三个;注: 等三个。

10。几个公式:

⑴三角形面积公式: ;

⑵内切圆半径r= ;外接圆直径2R=

11.已知 时三角形解的个数的判定:

第四部分 立体几何

1.三视图与直观图:注:原图形与直观图面积之比为 。

2.表(侧)面积与体积公式:

⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h

⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:

⑶台体:①表面积:S=S侧+S上底S下底;②侧面积:S侧= ;③体积:V= (S+ )h;

⑷球体:①表面积:S= ;②体积:V= 。

3.位置关系的证明(主要方法):

⑴直线与直线平行:①公理4;②线面平行的性质定理;③面面平行的性质定理。

⑵直线与平面平行:①线面平行的判定定理;②面面平行 线面平行。

⑶平面与平面平行:①面面平行的判定定理及推论;②垂直于同一直线的两平面平行。

⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。

⑸平面与平面垂直:①定义---两平面所成二面角为直角;②面面垂直的判定定理。

注:理科还可用向量法。

4.求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角)

⑴异面直线所成角的求法:

1 平移法:平移直线,2 构造三角形;

3 ②补形法:补成正方体、平行六面体、长方体等,4 发现两条异面直线间的关系。

注:理科还可用向量法,转化为两直线方向向量的夹角。

⑵直线与平面所成的角:

①直接法(利用线面角定义);②先求斜线上的点到平面距离h,与斜线段长度作比,得sin 。

注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。

⑶二面角的求法:

①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;

②三垂线法:由一个半面内一点作(或找)到另一个半平面的垂线,用三垂线定理或逆定理作出二面角的平面角,再求解;

③射影法:利用面积射影公式: ,其中 为平面角的大小;

注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;

理科还可用向量法,转化为两个班平面法向量的夹角。

5.求距离:(步骤-------Ⅰ。找或作垂线段;Ⅱ。求距离)

⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;

⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;

⑶点到平面的距离:

①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;

5 等体积法;

理科还可用向量法: 。

⑷球面距离:(步骤)

(Ⅰ)求线段AB的长;(Ⅱ)求球心角∠AOB的弧度数;(Ⅲ)求劣弧AB的长。

6.结论:

⑴从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;

⑵立平斜公式(最小角定理公式):

⑶正棱锥的各侧面与底面所成的角相等,记为 ,则S侧cos =S底;

⑷长方体的性质

①长方体体对角线与过同一顶点的三条棱所成的角分别为 则:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。

②长方体体对角线与过同一顶点的三侧面所成的角分别为 则有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。

⑸正四面体的性质:设棱长为 ,则正四面体的:

1 高: ;②对棱间距离: ;③相邻两面所成角余弦值: ;④内切2 球半径: ;外接球半径: ;

第五部分 直线与圆

1.直线方程

⑴点斜式: ;⑵斜截式: ;⑶截距式: ;

⑷两点式: ;⑸一般式: ,(A,B不全为0)。

(直线的方向向量:( ,法向量(

2.求解线性规划问题的步骤是:

(1)列约束条件;(2)作可行域,写目标函数;(3)确定目标函数的最优解。

3.两条直线的位置关系:

4.直线系

5.几个公式

⑴设A(x1,y1)、B(x2,y2)、C(x3,y3),⊿ABC的重心G:( );

⑵点P(x0,y0)到直线Ax+By+C=0的距离: ;

⑶两条平行线Ax+By+C1=0与 Ax+By+C2=0的距离是 ;

6.圆的方程:

⑴标准方程:① ;② 。

⑵一般方程: (

注:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆 A=C≠0且B=0且D2+E2-4AF>0;

7.圆的方程的求法:⑴待定系数法;⑵几何法;⑶圆系法。

8.圆系:

⑴ ;

注:当 时表示两圆交线。

⑵ 。

9.点、直线与圆的位置关系:(主要掌握几何法)

⑴点与圆的位置关系:( 表示点到圆心的距离)

① 点在圆上;② 点在圆内;③ 点在圆外。

⑵直线与圆的位置关系:( 表示圆心到直线的距离)

① 相切;② 相交;③ 相离。

⑶圆与圆的位置关系:( 表示圆心距, 表示两圆半径,且 )

① 相离;② 外切;③ 相交;

④ 内切;⑤ 内含。

10.与圆有关的结论:

⑴过圆x2+y2=r2上的点M(x0,y0)的切线方程为:x0x+y0y=r2;

过圆(x-a)2+(y-b)2=r2上的点M(x0,y0)的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2;

⑵以A(x1,y2)、B(x2,y2)为直径的圆的方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0。

第六部分 圆锥曲线

1.定义:⑴椭圆: ;

⑵双曲线: ;⑶抛物线:略

2.结论

⑴焦半径:①椭圆: (e为离心率); (左“+”右“-”);

②抛物线:

⑵弦长公式:

注:(Ⅰ)焦点弦长:①椭圆: ;②抛物线: =x1+x2+p= ;(Ⅱ)通径(最短弦):①椭圆、双曲线: ;②抛物线:2p。

⑶过两点的椭圆、双曲线标准方程可设为: ( 同时大于0时表示椭圆, 时表示双曲线);

⑷椭圆中的结论:

①内接矩形最大面积 :2ab;

②P,Q为椭圆上任意两点,且OP 0Q,则 ;

③椭圆焦点三角形:<Ⅰ>. ,( );<Ⅱ>.点 是 内心, 交 于点 ,则 ;

④当点 与椭圆短轴顶点重合时 最大;

⑸双曲线中的结论:

①双曲线 (a>0,b>0)的渐近线: ;

②共渐进线 的双曲线标准方程为 为参数, ≠0);

③双曲线焦点三角形:<Ⅰ>. ,( );<Ⅱ>.P是双曲线 - =1(a>0,b>0)的左(右)支上一点,F1、F2分别为左、右焦点,则△PF1F2的内切圆的圆心横坐标为 ;

④双曲线为等轴双曲线 渐近线为 渐近线互相垂直;

(6)抛物线中的结论:

①抛物线y2=2px(p>0)的焦点弦AB性质:<Ⅰ>. x1x2= ;y1y2=-p2;

<Ⅱ>. ;<Ⅲ>.以AB为直径的圆与准线相切;<Ⅳ>.以AF(或BF)为直径的圆与 轴相切;<Ⅴ>. 。

②抛物线y2=2px(p>0)内结直角三角形OAB的性质:

<Ⅰ>. ; <Ⅱ>. 恒过定点 ;

<Ⅲ>. 中点轨迹方程: ;<Ⅳ>. ,则 轨迹方程为: ;<Ⅴ>. 。

③抛物线y2=2px(p>0),对称轴上一定点 ,则:

<Ⅰ>.当 时,顶点到点A距离最小,最小值为 ;<Ⅱ>.当 时,抛物线上有关于 轴对称的两点到点A距离最小,最小值为 。

3.直线与圆锥曲线问题解法:

⑴直接法(通法):联立直线与圆锥曲线方程,构造一元二次方程求解。

注意以下问题:

①联立的关于“ ”还是关于“ ”的一元二次方程?

②直线斜率不存在时考虑了吗?

③判别式验证了吗?

⑵设而不求(代点相减法):--------处理弦中点问题

步骤如下:①设点A(x1,y1)、B(x2,y2);②作差得 ;③解决问题。

4.求轨迹的常用方法:(1)定义法:利用圆锥曲线的定义; (2)直接法(列等式);(3)代入法(相关点法或转移法);⑷待定系数法;(5)参数法;(6)交轨法。

第七部分 平面向量

⑴设a=(x1,y1),b=(x2,y2),则: ① a‖b(b≠0) a= b ( x1y2-x2y1=0;

② a⊥b(a、b≠0) a?b=0 x1x2+y1y2=0 .

⑵a?b=|a||b|cos=x2+y1y2;

注:①|a|cos叫做a在b方向上的投影;|b|cos叫做b在a方向上的投影;

6 a?b的几何意义:a?b等于|a|与|b|在a方向上的投影|b|cos的乘积。

⑶cos= ;

⑷三点共线的充要条件:P,A,B三点共线 ;

附:(理科)P,A,B,C四点共面 。

第八部分 数列

1.定义:

⑴等差数列 ;

⑵等比数列

2.等差、等比数列性质

等差数列 等比数列

通项公式

前n项和

性质 ①an=am+ (n-m)d, ①an=amqn-m;

②m+n=p+q时am+an=ap+aq ②m+n=p+q时aman=apaq

③ 成AP ③ 成GP

④ 成AP, ④ 成GP,

等差数列特有性质:

1 项数为2n时:S2n=n(an+an+1)=n(a1+a2n); ; ;

2 项数为2n-1时:S2n-1=(2n-1) ; ; ;

3 若 ;若 ;

若 。

3.数列通项的求法:

⑴分析法;⑵定义法(利用AP,GP的定义);⑶公式法:累加法( ;

⑷叠乘法( 型);⑸构造法( 型);(6)迭代法;

⑺间接法(例如: );⑻作商法( 型);⑼待定系数法;⑽(理科)数学归纳法。

注:当遇到 时,要分奇数项偶数项讨论,结果是分段形式。

4.前 项和的求法:

⑴拆、并、裂项法;⑵倒序相加法;⑶错位相减法。

5.等差数列前n项和最值的求法:

⑴ ;⑵利用二次函数的图象与性质。

第九部分 不等式

1.均值不等式:

注意:①一正二定三相等;②变形, 。

2.绝对值不等式:

3.不等式的性质:

⑴ ;⑵ ;⑶ ;

;⑷ ; ;

;⑸ ;(6)

4.不等式等证明(主要)方法:

⑴比较法:作差或作比;⑵综合法;⑶分析法。

第十部分 复数

1.概念:

⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;

⑵z=a+bi是虚数 b≠0(a,b∈R);

⑶z=a+bi是纯虚数 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2<0>

⑷a+bi=c+di a=c且c=d(a,b,c,d∈R);

2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,d∈R),则:

(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)?(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ;

3.几个重要的结论:

;⑶ ;⑷

⑸ 性质:T=4; ;

(6) 以3为周期,且 ; =0;

(7) 。

4.运算律:(1)

5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。

6.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;

第十一部分 概率

1.事件的关系:

⑴事件B包含事件A:事件A发生,事件B一定发生,记作 ;

⑵事件A与事件B相等:若 ,则事件A与B相等,记作A=B;

⑶并(和)事件:某事件发生,当且仅当事件A发生或B发生,记作 (或 );

⑷并(积)事件:某事件发生,当且仅当事件A发生且B发生,记作 (或 ) ;

⑸事件A与事件B互斥:若 为不可能事件( ),则事件A与互斥;

(6)对立事件: 为不可能事件, 为必然事件,则A与B互为对立事件。

2.概率公式:

⑴互斥事件(有一个发生)概率公式:P(A+B)=P(A)+P(B);

⑵古典概型: ;

⑶几何概型: ;

第十二部分 统计与统计案例

1.抽样方法

⑴简单随机抽样:一般地,设一个总体的个数为N,通过逐个不放回的方法从中抽取一个容量为n的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。

注:①每个个体被抽到的概率为 ;

②常用的简单随机抽样方法有:抽签法;随机数法。

⑵系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的

规则,从每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。

注:步骤:①编号;②分段;③在第一段采用简单随机抽样方法确定其时个体编号 ;

④按预先制定的规则抽取样本。

⑶分层抽样:当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。

注:每个部分所抽取的样本个体数=该部分个体数

2.总体特征数的估计:

⑴样本平均数 ;

⑵样本方差 ;

⑶样本标准差 = ;

3.相关系数(判定两个变量线性相关性):

注:⑴ >0时,变量 正相关; <0>

⑵① 越接近于1,两个变量的线性相关性越强;② 接近于0时,两个变量之间几乎不存在线性相关关系。

4.回归分析中回归效果的判定:

⑴总偏差平方和: ⑵残差: ;⑶残差平方和: ;⑷回归平方和: - ;⑸相关指数 。

注:① 得知越大,说明残差平方和越小,则模型拟合效果越好;

② 越接近于1,,则回归效果越好。

5.独立性检验(分类变量关系):

随机变量 越大,说明两个分类变量,关系越强,反之,越弱。

第十四部分 常用逻辑用语与推理证明

1. 四种命题:

⑴原命题:若p则q; ⑵逆命题:若q则p;

⑶否命题:若 p则 q;⑷逆否命题:若 q则 p

注:原命题与逆否命题等价;逆命题与否命题等价。

2.充要条件的判断:

(1)定义法----正、反方向推理;

(2)利用**间的包含关系:例如:若 ,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;

3.逻辑连接词:

⑴且(and) :命题形式 p q; p q p q p q p

⑵或(or):命题形式 p q; 真 真 真 真 假

⑶非(not):命题形式 p . 真 假 假 真 假

假 真 假 真 真

假 假 假 假 真

4.全称量词与存在量词

⑴全称量词-------“所有的”、“任意一个”等,用 表示;

全称命题p: ;

全称命题p的否定 p: 。

⑵存在量词--------“存在一个”、“至少有一个”等,用 表示;

特称命题p: ;

特称命题p的否定 p: ;

第十五部分 推理与证明

1.推理:

⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。

注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

注:类比推理是特殊到特殊的推理。

⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。

注:演绎推理是由一般到特殊的推理。

“三段论”是演绎推理的一般模式,包括:

⑴大前提---------已知的一般结论;

⑵小前提---------所研究的特殊情况;

⑶结 论---------根据一般原理,对特殊情况得出的判断。

二.证明

⒈直接证明

⑴综合法

一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。

⑵分析法

一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。

2.间接证明------反证法

一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

附:数学归纳法(仅限理科)

一般的证明一个与正整数 有关的一个命题,可按以下步骤进行:

⑴证明当 取第一个值 是命题成立;

⑵假设当 命题成立,证明当 时命题也成立。

那么由⑴⑵就可以判定命题对从 开始所有的正整数都成立。

这种证明方法叫数学归纳法。

注:①数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必须严格按步骤进行;

3 的取值视题目而4 定,5 可能是1,6 也可能是2等。

第十六部分 理科选修部分

1. 排列、组合和二项式定理

⑴排列数公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),当m=n时为全排列 =n(n-1)(n-2)…3.2.1=n!;

⑵组合数公式: (m≤n), ;

⑶组合数性质: ;

⑷二项式定理:

①通项: ②注意二项式系数与系数的区别;

⑸二项式系数的性质:

①与首末两端等距离的二项式系数相等;②若n为偶数,中间一项(第 +1项)二项式系数最大;若n为奇数,中间两项(第 和 +1项)二项式系数最大;

(6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。

2. 概率与统计

⑴随机变量的分布列:

①随机变量分布列的性质:pi≥0,i=1,2,…; p1+p2+…=1;

②离散型随机变量:

X x1 X2 … xn …

P P1 P2 … Pn …

期望:EX= x1p1 + x2p2 + … + xnpn + … ;

方差:DX= ;

注: ;

③两点分布:

X 0 1 期望:EX=p;方差:DX=p(1-p).

P 1-p p

4 超几何分布:

一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则 其中, 。

称分布列

X 0 1 … m

P …

为超几何分布列, 称X服从超几何分布。

⑤二项分布(独立重复试验):

若X~B(n,p),则EX=np, DX=np(1- p);注: 。

⑵条件概率:称 为在事件A发生的条件下,事件B发生的概率。

注:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。

⑶独立事件同时发生的概率:P(AB)=P(A)P(B)。

⑷正态总体的概率密度函数: 式中 是参数,分别表示总体的平均数(期望值)与标准差;

(6)正态曲线的性质:

①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,关于直线x= 对称;

③曲线在x= 处达到峰值 ;④曲线与x轴之间的面积为1;

5 当 一定时,6 曲线随 质的变化沿x轴平移;

7 当 一定时,8 曲线形状由 确定: 越大,9 曲线越“矮胖”,10 表示总体分布越集中;

越小,曲线越“高瘦”,表示总体分布越分散。

注:P =0.6826;P =0.9544

P =0.9974

成考快速报名和免费咨询:https://www.87dh.com/xl/ 很多成考考生很疑惑,成考考试当中数学科目和普通高考的知识点是不是一样,考试内容会不会很难,最后因为很多这样无厘头的疑问导致对成考望而却步,那么,成考高数很难吗?猎考网来为大家详细解答。

一般来说,成考数学会按照知识点或者说难度来划分高数一和高数二,一般来说理工科考生都需要考高数一,而文科类和体育艺术类成考专业需要考高数二,高数一的内容多,知识掌握要求一般要比高数二要高,大部分包含了高数二的内容。

这种区别主要体现在两个方面:其一是在共有知识内容方面,同一章中要求掌握的知识点,或同一知识点要求掌握的程度不尽相同。

如在一元函数微分学中,《高等数学》(一)要求掌握求反函数的导数、掌握求由参数方程所确定的函数的求导方法,会求简单函数的n阶导数,理解罗尔定理、拉格朗日中值定理,但上述知识点对《高等数学》(二)并不做要求;又如在一元函数积分学中,《高等数学》(一)要求掌握三角换元求不定积分,其中包括正弦变换、正切变换和正割变换,而《高等数学》(二)对正割变换不做考核要求。其二是在不同的知识内容方面,《高等数学》(一)考核内容中有二重积分,而《高等数学》(二)对二重积分并不做考核要求;再有《高等数学》(一)有无穷级数、常微分方程,高数(二)均不做要求。从试卷中可以看出,高等数学(一)比《高等数学》(二)多出来的这部分知识点,在考题中大约能占到30%的比例。共计45分左右。所以理科、工科类考生应按照《大纲》的要求全面认真复习。

无论是《高数》(一),还是《高数》(二),总的来讲试题考查得都较全面,试题分布较合理,主要贯穿极限、导数、积分这条主线。在考查基本概念的基础上,以考查基本计算能力为主,大多数考题都是常规计算题。

《高数》(一)主要是以《高数》为重点,约有7章内容,主要贯穿微分学和积分学这条主线,考生复习的重点也是微分学、积分学。《高数》(二)是经济类、管理类的必考科目,试题主要有两部分,一部分为高等数学内容,约占92%;另一部分是概率论初步,约占8%。

《高数》(一)和《高数》(二)的区别主要是对知识的掌握程度要求不同。《高数》(一)要求掌握求反函数的导数,掌握求由参数方程所确定的函数的求导方法,会求简单函数的n阶导数,要掌握三角换元、正弦变换、正切变换和正割变换。《高数》(二)只要求掌握正弦变换、正切变换等。从实际考试情况看,《高数》(一)一般比《高数》(二)多出约30%的考题,约占45分左右。所以,有的考生考《高数》(一),但是跟着《高数》(二)的辅导听课,也是可行的,但考生必须把《高数》(二)没涉及的知识补上,不然就会白白丢了30%的分数。

在试卷最后的大题中,《高数》(一)和《高数》(二)也有一定的区别。《高数》(一)一般涉及导数的应用,如函数的性质和曲线形状、导数的几何意义、求曲线的切线方程和法线方程。定积分的应用主要是定积分的换元积分法的应用,用定积分换元积分法作证明题,还有定积分的几何应用,求平面图形的面积和平面图形绕坐标轴旋转所生成的旋转体的体积等。

在《高数》(二)的重点内容概率论初步里,考生复习的重点要放在4点上,一是理解随机现象、随机试验、随机事件的有关观念;二是概率的计算;三是离散形随机变量的概率分布;四是离散形随机变量的数字特征——期望与方差。

成考高数在考试内容上根据不同专业国家是有不同的要求的,所以,其考试难度自然也不同,但是总体来说虽然数学对于很多人都是一大难关,但是据调查来看除理工科以外的其他专业的成考高数考试都不会太难,所以考生们可以安心报考不用担心了。

考生如果要获取更多关于上海成人高考相关讯息,如成人高考报名途径,报名时间,备考技巧,相关新闻和相关政策,敬请关注我们猎考网(http://www.shckw.org)。如果您还对报考条件或者其他问题抱有疑问,还请直接向猎考网在线招生咨询。如果您还对报考条件或者其他问题抱有疑问,还请直接向猎考网在线招生咨询。

本文为原创文章

成考有疑问、不知道如何总结成考考点内容、不清楚成考报名当地政策,点击底部咨询官网,免费领取复习资料:https://www.87dh.com/xl/

点击查看全部内容